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Abstract

Continual Test-Time Adaptation (CTTA) aims to online adapt a pre-trained model
to changing environments during inference. Most existing methods focus on
exploiting target data, while overlooking another crucial source of information,
the pre-trained weights, which encode underutilized domain-invariant priors. This
paper takes the geometric attributes of pre-trained weights as a starting point,
systematically analyzing three key components: magnitude, absolute angle, and
pairwise angular structure. We find that the pairwise angular structure remains
stable across diverse corrupted domains and encodes domain-invariant semantic
information, suggesting it should be preserved during adaptation. Based on this
insight, we propose PAID (Pairwise Angular-Invariant Decomposition), a prior-
driven CTTA method that decomposes weight into magnitude and direction, and
introduces a learnable orthogonal matrix via Householder reflections to globally
rotate direction while preserving the pairwise angular structure. During adaptation,
only the magnitudes and the orthogonal matrices are updated. PAID achieves
consistent improvements over recent SOTA methods on four widely used CTTA
benchmarks, demonstrating that preserving pairwise angular structure offers a
simple yet effective principle for CTTA. Our code is available at https://github.
com/wangkunyu241/PAID.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success in various computer vision
tasks [37, 38, 71–73, 80]. However, when there exist domain discrepancies between training and
testing environments [14, 47, 57, 58], directly applying a source pre-trained model may cause
significant performance degradation, particularly when the target distribution is unpredictable and
continually changing over time. This challenge in real-world scenarios has motivated the emergence
of Continual Test-Time Adaptation (CTTA) [60], which aims to adapt source pre-trained models
during inference to evolving test data, making it especially suitable for practical applications.

In CTTA, models rely on two key sources of information: the prior knowledge encoded in pre-trained
source weights and the streaming data from the target domains. Most existing methods [26, 62, 63]
focus on adapting to the target data, while treating pre-trained weights as static initialization, with
their potential largely overlooked. However, these weights, learned from large-scale supervised
training [4, 48], may encode transferable priors that remain invariant across domains. We posit that
leveraging such invariances in parameter space can help address core challenges in CTTA, including
catastrophic forgetting and error accumulation. This work explores this direction by uncovering

∗Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/wangkunyu241/PAID
https://github.com/wangkunyu241/PAID


(1) Magnitude Variation (2) Absolute Angle Variation (3) Pairwise Angular Structure Variation

Figure 1: (Experiment 1) Visualization of cross-domain variation of three geometric properties.
Pairwise angular structure remains stable under corruption but varies under semantic shift, suggesting
it encodes semantic-relevant, domain-invariant information. In contrast, magnitude and absolute
angle fluctuate irregularly across domains, reflecting domain-specific shifts.

domain-invariant components in pre-trained weights, offering a new perspective on knowledge
retention and transfer for continual adaptation.

1.1 Motivation

Recent studies in hyperspherical learning [31–34, 52] reveal that the angular component of neuron
weights, rather than their magnitudes, primarily encodes discriminative semantic information crucial
for visual recognition. Similar observations have been made in generative models [46], where the
pairwise angular structure among neurons effectively preserve semantic consistency after fine-tuning
on different domains. These findings suggest that beyond treating neural weights as individual
scalars, the geometry of weight space, particularly the angular components, may encode invariant
semantic priors derived from pre-training. Motivated by this, we ask: can the angular configuration
of pre-trained weights serve as a stable semantic anchor during continual adaptation? To investigate
this hypothesis, we design three sets of targeted experiments that isolate and examine the respective
roles of magnitude and angular components in the adaptation process. 2

Specifically, neuron weights, as exemplified by the linear projection matrix W = [w1, w2, . . . , wk] ∈
Rd×k, can be decomposed into a magnitude M ∈ R1×k and a unit-length direction Ŵ ∈ Rd×k :

W = M ⊙ Ŵ , where wi = ∥wi∥ · ŵi, ŵi =
wi

∥wi∥
, ∥ŵi∥ = 1. (1)

Building on this view, we identify three geometric attributes of the weight space that are relevant to
adaptation: (1) the magnitude, which determines the scaling of feature responses; (2) the absolute
angle, referring to the orientation of each unit direction vector in the feature space, which may rotate
during adaptation; (3) the pairwise angular structure, defined as the set of angles between all pairs of
unit direction vectors, capturing how weight vectors are arranged relative to one another.

Experiment 1 examines the domain invariance of geometric attributes in weight space by analyzing
their variation under different conditions. We use a ViT-Base model pre-trained on ImageNet and
conduct two types of experiments: (1) Corruption, where the model performs test-time adaptation
on each of the 15 corrupted domains in ImageNet-C; and (2) Semantic shift, where the model is
fine-tuned on CIFAR-100 to induce semantic changes, serving as a reference. To quantify the average
variation in geometric attributes, we define three metrics: (1) magnitude variation ∆M, (2) absolute
angle variation ∆A, and (3) pairwise angular structure variation ∆S, quantified using hyperspherical
energy [31, 46], which refers to the sum of hyperspherical similarity between all pairwise neurons:

∆M(W 1,W 2) =
1
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∥∥ŵ1
i − ŵ1
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∣∣∣ , where i, j ∈ {1, . . . , k}, (3)

2More experimental details can be found in Appendix A
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Figure 2: (Experiment 2) Illustration of three update strategies. (1) Scaling the magnitude of each
vector; (2) Independently rotating each vector, altering their absolute angle; (3) Jointly rotating all
vectors while preserving their pairwise angular structure.
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Figure 3: (Experiment 2) Radar and bar charts showing classification error rates across 15 corruption
domains and their mean. Comparisons between settings (5 vs 1, 3; 5 vs 4; 3 vs 2) show that pairwise
angular structure is a domain-invariant component worth preserving, while magnitude and direction,
when constrained by fixed angular structure, are domain-specific and beneficial for adaptation.

As shown in Fig. 1, the pairwise angular structure remains consistently stable across all corruption
domains, with minimal changes in hyperspherical energy. In contrast, it exhibits substantial variation
under semantic shift. This contrast reveals that pairwise angular structure is well preserved under per-
turbations and varies in response to semantic changes. In contrast, both magnitude and absolute angle
exhibit irregular variations across domains, indicating that their changes are driven by adaptation to
domain-specific statistical differences rather than semantics. These findings provide strong empiri-
cal support that pairwise angular structure encodes semantic-relevant, domain-invariant properties,
whereas magnitude and absolute direction are more responsive to domain-specific statistical shifts.

Experiment 2 conducts an ablation study to clarify the contribution of geometric attributes to
adaptation. Based on the decomposition, we design three update strategies, as shown in Fig. 2:
(1) magnitude adjustment, enabling learning of the magnitude matrix M ; (2) direction adjustment,
enabling learning of unit direction matrix Ŵ ; and (3) direction adjustment while preserving pairwise
angular structure, implemented via orthogonal rotation [5, 16, 69] of direction matrix. Note that
changing the pairwise angular structure inherently changes absolute angle, but not vice versa. Thus,
(3) represents a constrained subset of (2). Using these strategies, we construct five settings for
continually adapting a ViT-Base model (pre-trained on ImageNet) to the 15 ImageNet-C domains:
(1) magnitude only; (2) direction only; (3) direction only while preserving pairwise structure; (4)
magnitude + direction; and (5) magnitude + direction while preserving pairwise structure.

As shown in Fig. 3, setting (5) outperforms settings (1) and (3), while settings (2) and (4), both of
which alter the pairwise angular structure, lead to a clear performance drop compared to (3) and (5).
This contrast underscores the role of pairwise angular structure as a domain-invariant component that
should be preserved during adaptation. In contrast, magnitude and direction, when adjusted under the
constraint of maintaining relative angular geometry, serve as domain-specific components that are
adaptable and beneficial for enhancing performance in CTTA.
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Figure 4: (Experiment 3) Attention map visualizations for two setting pairs (5 vs 4; 3 vs 2). The
comparison further supports the semantic relevance and domain invariance of pairwise angular
structure in CTTA.

Experiment 3 further substantiates the earlier conclusions from a perceptual perspective by visu-
alizing attention maps under the five settings in Experiment 2. As shown in Fig. 4, preserving the
pairwise angular structure allows the model to focus on crucial semantic regions. In contrast, settings
(2) and (4) that alter this structure lead to diffused and misaligned attention, with the model failing to
capture core object information. This comparison reinforces the critical role of preserving pairwise
angular structure for achieving cross-domain invariance.

1.2 Contribution

These three sets of experiments—statistical analysis, functional validation, and visual interpreta-
tion—collectively reveal a key insight: the pairwise angular structure of neural weights encodes a
semantically relevant and domain-invariant prior derived from pre-training, which should be preserved
during CTTA. In contrast, the magnitude and absolute angle, when adjusted under the constraint of
preserving the pairwise angular structure, serve as domain-specific components that enable effective
adaptation to the target domains.

Building on this insight, we propose Pairwise Angular-Invariant Decomposition (PAID) for CTTA.
PAID explicitly decomposes pre-trained weights into magnitude and direction matrices. To maintain
the pairwise angular structure during adaptation, we introduce a learnable orthogonal matrix con-
structed via Householder transformations, enabling global rotation of directions without altering their
relative angular configuration. Leveraging this orthogonality, we freeze the original direction matrix
and update only the magnitude and the injected orthogonal matrix, ensuring structure-preserving
adaptation. In summary, the contributions can be summarized as follows:

• We identify the pairwise angular structure of pre-trained weights as a domain-invariant
semantic prior that should be preserved during CTTA, supported by statistical, functional,
and visual analyses.

• We propose PAID, a novel prior-driven CTTA method that preserves the pairwise angular
structure of weights while enabling controlled adaptation of their magnitudes and directions
through orthogonal transformations.

• PAID achieves consistent improvements over recent SOTA methods on four standard CTTA
benchmarks, demonstrating strong effectiveness and generalizability.

2 Related Work

Continual Test-time Adaptation (CTTA) aims to online adapt a source pre-trained model to handle
a sequence of target domains. Existing learning paradigms can be broadly categorized into three
types [26, 56, 62, 63]. Optimization-based methods aim to adjust pre-trained models by designing new
objectives, including statistics calibration [11, 54, 59, 68], consistency regularization [29, 51, 53, 66],
entropy minimization [41, 55, 78], and pseudo-labeling [1, 20, 70]. Data-based methods focus on
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enhancing data diversity or mitigating the impact of distributional shifts. Typical strategies include
data augmentation [8, 36, 74] and memory bank [12, 61]. Model-based methods enhance adaptation
by modifying or extending the model architecture, including module addition [20, 29], module
substitution [19], and prompt-based mechanisms [9, 10, 50, 76]. While similar in form to model-
based methods, our method introduces a novel perspective by leveraging transferable priors encoded
in pre-trained weights. We exploit the pairwise angular structure as a domain-invariant prior to
enhance CTTA.

Parameter-Efficient Fine-Tuning (PEFT) [13] reduces adaptation cost by freezing most large model
parameters and updating only a small, task-specific subset. Representative methods include adapter-
based methods [15], low-rank adaptation [6, 17, 75] and prompt tuning [22, 45]. Among them,
DoRA [30] and OFT [46] are particularly insightful: DoRA decomposes weights into magnitude and
direction, applying low-rank updates solely to the direction for near full-tuning expressiveness; OFT
adopts layer-shared orthogonal transformations to fine-tune only the direction of weights, preserving
the angular structure critical for semantic consistency in generative models. Inspired by these, we
introduce the idea of weight decomposition into the field of test-time adaptation, rethinking it from
the lens of generalization. Through a systematic analysis of pre-trained weight space, we find that the
pairwise angular structure remains stable across domains and encodes domain-invariant semantics.
This observation, supported by statistical, functional, and visual evidence, motivates us to explicitly
preserve angular structure during CTTA.

3 Methodology

3.1 Preliminaries
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Figure 5: PAID decomposes pre-trained weights into
magnitude and direction. To preserve pairwise angular
structure, we introduce a learnable orthogonal matrix,
enabling global rotation. Only magnitude and orthogo-
nal matrices are updated during adaptation.

Given a model fθ pre-trained on the
source domain Ds = {xs, ys}, our goal
is to adapt this model to a sequence
of continually changing target domains
{D1

t , D
2
t , . . . , D

N
t }. In an online setting,

the model fθ processes a sequence of test
data batches {Bt}∞t=1, with each batch Bt

arriving at time step t. Consistent with
prior work [60], we assume that all sam-
ples in a batch Bt come from the same tar-
get domain, though the domain identity is
unknown. At each time step t, CTTA aims
to adapt the model parameters from θt to
θt+1 by learning from the current batch Bt,
thereby enhancing performance on subse-
quent batches.

A Vision Transformer model consists of
multiple encoder layers, each containing a
Multi-Head Attention (MHA) block and
a Feed-Forward Network (FFN) block.
The MHA block utilizes three key linear
weights Wq for the query, Wk for the key,
and Wv for the value to compute atten-
tion scores and aggregate weighted values
from normalized feature representations.
In addition, a linear weight Wo combines
the outputs of all attention heads. In the
FFN block, the input is processed through
two linear weights Wm1 and Wm2 with a
GELU function applied between them. This work focuses on decomposing the pre-trained weights
of these linear layers Wq , Wk, Wv , Wo, Wm1

and Wm2
, preserving their domain-invariant priors to

enhance CTTA task. Fig. 5 provides an overview of our method.
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3.2 Pairwise Angular-Invariant Decomposition (PAID)

Following Eq. 1, a linear projection matrix W = [w1, w2, . . . , wk] ∈ Rd×k can be decomposed into
a magnitude matrix M ∈ R1×k and a direction matrix Ŵ = [ŵ1, ŵ2, . . . , ŵk] ∈ Rd×k as:

W = M ⊙ Ŵ , where wi = ∥wi∥ · ŵi, ∥ŵi∥ = 1. (4)

Empirical evidence suggests that the pairwise angular structure of pre-trained weights, defined
as the angles between all pairs of unit direction vectors, encodes a semantically meaningful and
domain-invariant prior. This structure should be preserved during the CTTA process. In contrast,
magnitude and absolute angle, when adapted under the constraint of preserving this structure, serve as
domain-specific components that support effective adaptation. Accordingly, we make the magnitude
matrix M learnable while freezing the original direction matrix Ŵ . To enable directional adaptation
without disrupting angular structure, we introduce a learnable orthogonal matrix O ∈ Rk×k, which
performs global rotations while preserving pairwise angular structure:

M ⊙ Ŵ −→ M ⊙
(
Ŵ ·O

)
, (5)

A real square matrix O ∈ Rk×k is orthogonal if it satisfies O⊤O = I . Such matrix represent
distance-preserving linear transformation, including rotation and reflection. For any vector x ∈ Rk,
the transformation x 7→ Ox preserves the Euclidean norm, that is, ∥Ox∥ = ∥x∥. For any pair of
vectors (x, y), it also preserves inner products: ⟨Ox, Oy⟩ = ⟨x, y⟩. As a result, the relative
geometry among the vectors remains unchanged. Therefore, applying an orthogonal transformation
to a set of vectors performs a global rotation without altering their pairwise angular structure.

To construct the orthogonal transformation, we adopt the Householder reflection formulation [5, 16,
69]. A Householder reflection is a linear transformation that reflects a vector across a hyperplane
perpendicular to a unit vector. Given u ∈ Rk with ∥u∥2 = 1, the corresponding Householder matrix
is defined as:

H = I − 2uu⊤, (6)

where H ∈ Rk×k is orthogonal and symmetric, satisfying H⊤H = I and det(H) = −1, indicating
a reflection. The transformation preserves Euclidean norms and inner products, i.e.,

∥Hx∥2 = ∥x∥2, ⟨Hx,Hy⟩ = ⟨x, y⟩, ∀x, y ∈ Rk, (7)

thereby maintaining both vector lengths and pairwise angles. Since Householder matrices are
orthogonal, and the product of orthogonal matrices remains orthogonal, a general orthogonal matrix
O ∈ Rk×k can be constructed as a chain of r Householder reflections:

O =

r∏
i=1

Hi =

r∏
i=1

(I − 2uiu
⊤
i ), ui ∈ Sk−1. (8)

This parameterization is expressive: when r = k, it can represent any element in the orthogonal
group O(k), while smaller r yields a trade-off between representational capacity and efficiency.
Therefore, we adopt such a chain to construct the learnable orthogonal transformation used for
structure-preserving adaptation and r denotes orthogonal matrix coefficient.

3.3 Optimization Objective

In line with prior CTTA works [39, 40, 77], we adopt a feature distribution alignment strategy
between the source and target domains. The core idea is to reduce the domain shift by aligning the
first and second moments (i.e., mean and standard deviation) of features extracted from both domains.
To ensure consistency, all features are extracted from the same location in the backbone: the CLS
token output after the final layer normalization and before the classification head in ViT-Base. This
representation is used for both source and target domains throughout the CTTA process.

We pre-compute the source domain statistics (µs, σs) using a randomly sampled subset of 500 images
from the source domain Ds. This process is performed offline, and no further access to source data is
needed at test time. The resulting statistics are compact and stored for use during adaptation. At each
test-time step T , a new target batch BT

t arrives, where the subscript t indicates the target domain.
The features of BT

t , denoted as ZT
t , are extracted from the same CLS token position. We compute

6



the batch-wise mean µT
t and standard deviation σT

t of the target features. To align the source and
target distributions, we define the following objective:

L = ∥µs − µT
t ∥2 + λ∥σs − σT

t ∥2, (9)

where λ is a weighting hyper-parameter that balances the contribution of the two terms.

3.4 Intuitive Explanation of PAID

To explain the intuition for why PAID works, we draw an analogy from the frequency domain
decomposition of images. In the Fourier transform [43], an image can be decomposed into a
magnitude and a phase spectrum. The magnitude captures energy distribution, contrast, and intensity,
and is highly sensitive to domain-specific variations such as noise and style. In contrast, the phase
encodes angular alignment with Fourier bases, which determines the structural layout and semantic
content. The separation between semantic structure and domain-specific appearance has been widely
explored in frequency-based domain generalization [18, 21, 25, 27, 67]. For instance, APR [2] reveals
that networks are more sensitive to magnitude perturbations, while phase is crucial for retaining
semantic information and achieving robust recognition. FACT [65] verifies the domain-invariant
property of phase by showing that transferring phase yields better generalization than amplitude. This
perspective supports our design in PAID. The pairwise angular structure, akin to the phase spectrum,
captures semantics and remains invariant across domains. PAID preserves the angular structure while
adapting the magnitude and direction via constrained orthogonal transformations, thus achieving
structure-preserving adaptation across domains.

3.5 Theoretical Justification of PAID

To justify the design of PAID, we analyze the effect of domain shifts on the angular structure
of weights using a simplified linear classification model. This reveals why a shared orthogonal
transformation suffices for adapting to domain corruptions but not semantic shifts.

Setup. Let x ∈ Ra be an input vector and wc ∈ Ra the weight vector for class c ∈ {1, . . . , C}. The
predicted label is:

ŷ(x) = argmax
c

w⊤
c x.

Case 1: Corruption (Class-agnostic Transformation). Suppose all inputs are transformed by the
same differentiable function x′ = d(x). Using first-order Taylor expansion around clean data:

d(x) ≈ Sx+ q,

where S ∈ Ra×a is the Jacobian matrix, assumed invertible and independent of class y. Under this
assumption, the optimal target-domain classifier that preserves original class boundaries satisfies:

w′
c = S−⊤wc, ∀c.

We write S−⊤ = RH (polar decomposition), where R is orthogonal (R⊤R = I) and H is symmetric
positive definite. The transformed weights are:

w′
c = RHwc.

The cosine similarity between any two transformed weights is:

cos∠(w′
c, w

′
d) =

w⊤
c H

2wd

∥Hwc∥ ∥Hwd∥
.

Near-isotropic assumption. We assume H2 ≈ γ2I for some scalar γ > 0. This holds when the
degradation has approximately equal effect in all directions, such as Gaussian blur, light noise, or
JPEG compression. Under this mild and physically reasonable assumption, pairwise angles are
approximately preserved:

cos∠(w′
c, w

′
d) ≈ cos∠(wc, wd).

Case 2: Semantic Shift (Class-dependent Transformation). Now suppose each class undergoes a
different transformation:

x′ = dc(x) ≈ Scx+ qc, Sc ∈ GL(a).
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Table 1: Mean classification error rate (%) and gain (%) on ImageNet-to-ImageNet-C using ViT-Base.
Bold indicates the best performance. Fine-grained performances are shown in Appendix C.

Method Source Pseudo [24] TENT [55] CoTTA [60] VDP [9] SAR [42] RoTTA [68] EcoTTA [51] ViDA [29] C-MAE [28] Ours

Mean↓ 55.8 66.8 51.0 54.8 50.0 45.6 48.2 48.0 43.4 42.5 42.2
Gain↑ 0.0 -11.0 +4.8 +1.0 +5.8 +10.2 +7.6 +7.8 +12.4 +13.3 +13.6

Table 2: Mean classification error rate (%) and gain (%) on CIFAR100-to-CIFAR100-C using ViT-
Base. Bold indicates the best performance. Fine-grained performances are shown in Appendix C.

Method Source Pseudo [24] TENT [55] CoTTA [60] VDP [9] ViDA [29] C-MAE [28] Ours

Mean↓ 35.4 33.2 32.1 34.8 32.0 27.3 26.4 24.9
Gain↑ 0.0 +2.2 +3.3 +0.6 +3.4 +8.1 +9.0 +10.5

The new classifier becomes:
w′′

c = S−⊤
c wc.

Since Sc varies across classes, there is generally no single matrix T such that w′′
c = Twc for all c,

and therefore:
cos∠(w′′

c , w
′′
d ) ̸= cos∠(wc, wd).

Semantic shifts necessarily change the pairwise angular structure.

Conclusion. When domain shifts are class-agnostic and locally differentiable, they can be represented
by a shared invertible matrix S, and the optimal classifier corresponds to applying the inverse transpose
S−⊤ to all weights. This transformation preserves angles up to a near-isotropic assumption, justifying
why PAID only needs to learn a shared orthogonal rotation and magnitude adjustment. When the
shift is class-dependent, this shared structure no longer exists, and angular geometry must change.

4 Experiments

In Section 4.2, we compare our method with state-of-the-art approaches on both classification and
segmentation CTTA benchmarks. Section 4.3 analyzes the effectiveness of our design choices and
investigates the influence of the injected matrix coefficient, test batch size, number of source examples,
and computational overhead. Additional ablations, including the effect of the loss coefficient,
the choice of injection layer, and a 10-round classification CTTA evaluation, and experiments on
convolutional backbones, are provided in Appendix B and D.

4.1 Experimental Setup

Datasets. We evaluate our method on three classification CTTA benchmarks: CIFAR10-to-
CIFAR10C, CIFAR100-to-CIFAR100C [23], and ImageNet-to-ImageNet-C [14]. In the classification
tasks, we follow the sequential adaptation process described in [51], where the pre-trained source
model adapts to each of the 15 target domains, each defined by the highest corruption severity. Online
prediction results are immediately assessed after processing the input. For segmentation CTTA, we
assess our method on Cityscapes-to-ACDC, where Cityscapes [3] serves as the source domain and
ACDC [49] as the target domains, which includes images captured under four distinct unobserved
visual conditions: Fog, Night, Rain, and Snow. To simulate continual environmental changes, we
cyclically iterate through the same sequence of target domains (Fog → Night → Rain → Snow) three
rounds, reflecting real-world scenarios.

Methods Compared. We compare our method against several strong CTTA baselines, including
Source, Pesudo [24], TENT [55], CoTTA [60], DePT [10], VDP [9], SAR [42], RoTTA [68],
EcoTTA [51], ViDA [29], and C-MAE [28]. "Source" represents the use of the pre-trained model for
adaptation without any specific method. The selection of comparison methods is based on their open-
source availability and representativeness, with implementations and results drawn from publicly
available codebases, paper descriptions, and established benchmarks.

Implementation Details. For the classification CTTA tasks, we use ViT-base [7] as the backbone
model, resizing input images to 384×384 for CIFAR10-C and CIFAR100-C, and to 224×224 for the
ImageNet-C benchmark. For the segmentation CTTA task, we employ Segformer-B5 [64] pre-trained
on the Cityscapes dataset as the source model, down-sampling input images from 1920×1080 to
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Table 3: Mean classification error rate (%) and gain (%) on CIFAR10-to-CIFAR10-C using ViT-Base.
Bold indicates the best performance. Fine-grained performances are shown in Appendix C.

Method Source Pseudo [24] TENT [55] CoTTA [60] VDP [9] ViDA [29] C-MAE [28] Ours

Mean↓ 28.1 26.9 23.5 24.6 24.1 20.7 12.6 11.0
Gain↑ 0.0 +1.2 +4.6 +3.5 +4.0 +7.4 +15.5 +17.1

Table 4: Mean mIoU (%) and gain (%) on Cityscapes-to-ACDC (3-round average) using Segformer-
B5. Bold indicates the best performance. Fine-grained performances are shown in Appendix C.

Metric Source TENT [55] CoTTA [60] DePT [10] VDP [9] SAR [42] EcoTTA [51] ViDA [29] C-MAE [28] Ours

Mean↑ 56.7 55.7 58.6 53.4 58.2 57.0 55.8 61.9 61.8 62.2
Gain↑ 0.0 -1.0 +1.9 -3.3 +1.5 +0.3 -0.9 +5.2 +5.1 +5.5

960×540. The AdamW [35] optimizer is used with parameters (β1, β2) = (0.9, 0.999). Hyper-
parameters for CIFAR10-C, CIFAR100-C, ImageNet-C, and ACDC are set as follows: batch size
{64, 64, 64, 1}, orthogonal matrix coefficient {12, 12, 12, 12}, and loss coefficient {1.0, 1.0, 0.1,
1.0}. To initialize the learnable parameters, we perform warm-up iterations on classification datasets.
For linear layer selection, we inject all linear layers, including those in the multi-head attention
block (q, k, v, o) and the MLP block (m). The number of source examples is set to 500. The
experiments are conducted on the NVIDIA RTX 3090 GPU. All ablation studies are conducted on
ImageNet-to-ImageNet-C unless otherwise specified.

4.2 Results on Benchmark Datasets

Table 1 reports classification error rates on ImageNet-C under corruption severity level 5. Our method
achieves the lowest mean error of 42.2%, outperforming strong baselines such as SAR (45.6%),
ViDA (43.4%), and C-MAE (42.5%). Compared to the source model, our method yields a substantial
improvement of +13.6%. In Table 2, we present results on CIFAR100-C. Our method achieves the
best overall performance with a mean error of 24.9%, surpassing recent leading methods including
ViDA (27.3%) and C-MAE (26.4%). The performance gain over the source model reaches +10.5%.
Table 3 shows the results on the simpler CIFAR10-C dataset. Our method achieves a mean error of
11.0%, which is a +17.1% improvement over the source model and also outperforms the best baseline
(C-MAE at 12.6%). This confirms the effectiveness of our adaptation mechanism even on small-scale
datasets. For the segmentation task, Table 4 reports the average mIoU on the Cityscapes-to-ACDC
benchmark over three consecutive adaptation rounds. Our method achieves the highest average mIoU
of 62.2%, showing robust performance across rounds and delivering a consistent +5.5% improvement
over the source model.

4.3 Ablation Analysis

Effect of Each Component. We conduct ablation studies to validate the effectiveness of key design
choices in PAID, as shown in Tab. 5. A central finding is that preserving the pairwise angular structure
during adaptation is essential for strong CTTA performance. Directly adjusting the direction matrix,
which allows each weight vector to rotate independently, disrupts the relative geometry and leads
to performance degradation. In contrast, PAID freezes the original direction matrix and applies a
learnable orthogonal transformation to rotate all vectors jointly. This enables adjustment of absolute
angles while preserving their relative angular structure. We also compare two general parameter-
efficient tuning methods: LoRA [17], which adds low-rank matrices to linear layers, and DoRA [30],
which decomposes linear weights into magnitude and direction and applies LoRA to the directional
component. Both methods perform sub-optimally in our setting, suggesting that generalization in
CTTA demands tailored, customized designs.

Effect of Injected Matrix Coefficient. We perform an ablation study on the number of orthogonal
matrices used in the Householder transformation chain (denoted as the coefficient r), as shown in Fig.
6 (a). While increasing the number of matrices enhances the model’s expressive capacity, we observe
that CTTA performance does not improve monotonically with the number of matrices. A possible
reason is that the corrections required for domain perturbations do not demand overly complex
transformations, and higher complexity may negatively affect model convergence in online adaptation.
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Table 5: Ablation on design choices. “Adjust
Magn.” denotes whether the magnitude ma-
trix is updated, “Adjust Dir.” denotes whether
the direction matrix is updated, and “Inject
Orth.” indicates whether the direction matrix
is frozen and rotated via orthogonal matrices.

Adjust Magn.? Adjust Dir.? Inject Orth.? Mean↓ Gain↑
Baseline 55.8 0.0

✓ ✗ ✗ 46.0 +9.8
✗ ✓ ✗ 51.3 +4.5
✓ ✓ ✗ 52.2 +3.6
✗ ✗ ✓ 44.1 +11.7
✓ ✗ ✓ 42.2 +13.6

LoRA [17] 49.7 +6.1
DoRA [30] 48.1 +7.7

Table 6: Computational analysis of different meth-
ods. “#Param.” denotes the number of learnable
parameters, while “#Extra Param.” refers to addi-
tional parameters introduced during CTTA. “#FP”
and “#BP” indicate the forward and backward prop-
agation times, respectively. “Time” represents the
relative computation time (normalized by TENT).

Method #Param. #Extra Param. #FP #BP Time Err. Mean↓
TENT [55] 0.03M 1 1 1.0 51.0
CoTTA [51] 86.57M 11.7 1 3.6 54.8

VDP [9] 1800 ✓ 2 1 1.5 50.0
EcoTTA [51] 3.46M ✓ 1 1 1.9 48.0

ViDA [29] 7.13M ✓ 11 1 2.8 43.4

Ours 1.24M ✓ 1 1 1.6 42.2

(a) (b) (c)

Figure 6: Ablation on (a) the coefficient of the injected orthogonal matrix, (b) the number of source
domain samples, and (c) the test-time batch size

Our experiments reveal that the best performance is achieved when the number of matrices is set to
12, indicating an efficient trade-off between capacity and stability.

Effect of Number of Source Examples. We investigate the sensitivity of PAID to the amount of
source data by varying the number of images used to pre-compute source-domain statistics from 0 to
5,000. As shown in Fig. 6 (b), our method achieves strong performance with as few as 500 source
images. It is worth emphasizing that these statistics are computed once prior to CTTA and are not
involved in the online adaptation process. Moreover, storing the computed statistics incurs negligible
memory cost. These results demonstrate that PAID requires minimal source-domain information to
function effectively, making it practical for real-world scenarios.

Effect of Test Batch Size. To comprehensively evaluate the impact of test-time batch size, we
compare various CTTA methods under batch sizes ranging from 1 to 256. As shown in Fig. 6 (c),
a consistent trend emerges across all methods: regardless of their objective functions, performance
remains stable with sufficiently large batches but deteriorates as the batch size decreases. In the
extreme case of single-sample adaptation, all methods suffer substantial performance drops. In addi-
tion, our method maintains decent performance as long as the batch size exceeds 4, and consistently
outperforms all comparison methods beyond this threshold.

Analysis of Computation, Parameter, and Latency. We analyze the computational complexity of
different methods in Tab. 6, comparing the number of learnable parameters, the number of forward
and backward passes, and relative runtime. While achieving the best overall performance, our method
maintains a relatively small number of learnable parameters and avoids the repeated forward passes
required by methods such as CoTTA, VDP, and ViDA. As a result, the increase in computational cost
remains moderate, striking a good balance between efficiency and effectiveness.

5 Conclusion

This work demonstrates that the pairwise angular structure of source pre-trained weights encodes
the domain-invariant semantic prior, supported by statistical analysis, functional validation, visual
evidence, intuitive explanation, and theoretical justification. Leveraging this insight, we decompose
weights into magnitude and direction, allowing magnitudes to adapt freely while constraining
directional updates to global rotations via chained Householder transformations. This preserves the
intrinsic angular structure during adaptation. Extensive experiments validate its efficacy.
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A Additional Details of Three Motivation Experiments

In Experiment 1, we compute a weighted average of three statistics (mean, variance, and hyperspheri-
cal energy) across all linear layers, followed by min-max normalization across different cross-domain
settings to produce the visualization in Fig. 1. The TTA results correspond to our proposed method,
PAID, applied under a non-continual setting where all linear layers are adapted. The fine-tune baseline
refers to supervised fine-tuning of the pret-rained model on the CIFAR-100 dataset for 3 epochs,
using warm-up and cosine annealing learning rate schedules. All linear layers and the classification
head are learnable during this process. In Experiment 2, the orthogonal rotation is implemented
using the chained orthogonal matrices described later in the paper. All hyperparameter settings are
aligned with those specified for ImageNet-C in our implementation details. For the attention map
visualization in Experiment 3, we use the attention-rollout codebase.3

(a) (b)

ImageNet-C CIFAR100-C CIFAR10-C

Figure 7: Ablation on loss balancing coefficient λ

Table 7: Ablation on the selection of linear layer injection

Ablation Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓
qv 51.1 44.2 44.5 60.0 58.3 50.3 50.8 40.8 41.7 49.4 25.3 59.0 43.4 37.1 35.8 46.1
qk 52.3 48.5 47.2 66.2 67.7 56.9 60.1 46.1 44.7 58.8 28.1 77.8 49.8 40.1 39.4 52.2

qkv 50.7 44.5 44.2 62.8 59.1 53.0 53.5 43.4 43.4 54.1 27.0 64.1 43.8 37.5 37.3 47.9
qkvo 48.8 43.0 43.2 58.5 56.8 51.6 50.0 41.0 42.2 48.5 26.7 57.8 44.0 38.6 37.5 45.9

qkvom 48.8 43.7 44.4 49.4 49.6 47.3 44.2 37.5 39.4 42.1 25.2 50.0 39.3 35.5 36.5 42.2

Table 8: 10-Round CTTA classification results on ImageNet-C, CIFAR100-C, and CIFAR10-C.

Dataset Setting Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓

ImageNet-C
1-Round 48.8 43.7 44.4 49.4 49.6 47.3 44.2 37.5 39.4 42.1 25.2 50.0 39.3 35.5 36.5 42.2

10-Round 47.0 43.8 43.5 48.6 50.6 46.2 42.8 39.5 38.8 40.5 25.5 47.2 39.2 34.8 36.4 41.6

CIFAR100-C 1-Round 40.7 31.9 20.4 19.8 35.9 23.0 16.3 20.5 18.2 25.3 12.6 19.8 29.4 28.2 31.3 24.9
10-Round 35.5 31.9 18.6 19.5 35.7 25.1 16.7 18.1 19.3 21.5 12.1 19.5 26.2 29.7 35.2 24.3

CIFAR10-C
1-Round 22.9 11.8 9.9 9.1 16.7 10.8 7.4 7.4 6.6 11.4 4.5 9.3 12.8 9.4 14.5 11.0

10-Round 15.9 13.5 9.0 9.3 15.3 9.1 8.9 7.0 6.7 10.2 4.2 8.2 15.8 9.6 12.0 10.3

B Additional Ablation Studies

Effect of Loss Balancing Coefficient. Unlike the orthogonal matrix coefficient r, which shows a
consistent optimal value across the three classification benchmarks, the optimal value of the loss
balancing coefficient λ exhibits outliers. Fig. 7 show that ImageNet-C achieves optimal accuracy
with a much smaller λ than CIFAR100-C and CIFAR10-C. ImageNet-C keeps its native resolution of
224 × 224, and most corruptions simply shift global intensity, so aligning feature means removes
most of the domain shift and only a small weight on variance alignment is needed. By contrast,
CIFAR images are first enlarged from 32 × 32 to 384 × 384, which spreads each pixel and magnifies
local artifacts, making second-order statistics more important; therefore, a larger λ that emphasizes
variance alignment is required on the CIFAR variants.

Effect of Linear Layer Injection. We examine where to place the orthogonal update in Tab. 7.
ViT-Base contains five types of linear layers: q, k, v, o (attention output), and m (MLP). We find
that the best performance is achieved when all linear layers are updated (qkvom), indicating that

3https://github.com/BoCtrl-C/attention-rollout
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Table 9: Classification error rate (%) for ImageNet-to-ImageNet-C, evaluated on ViT-Base with
corruption severity level 5. Bold indicates the best performance.
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Source 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 0.0
Pseudo [24] 45.2 40.4 41.6 51.3 53.9 45.6 47.7 40.4 45.7 93.8 98.5 99.9 99.9 98.9 99.6 66.8 -11.0
TENT [55] 52.2 48.9 49.2 65.8 73.0 54.5 58.4 44.0 47.7 50.3 23.9 72.8 55.7 34.4 33.9 51.0 +4.8
CoTTA [60] 52.9 51.6 51.4 68.3 78.1 57.1 62.0 48.2 52.7 55.3 25.9 90.0 56.4 36.4 35.2 54.8 +1.0
VDP [9] 52.7 51.6 50.1 58.1 70.2 56.1 58.1 42.1 46.1 45.8 23.6 70.4 54.9 34.5 36.1 50.0 +5.8
SAR [42] 45.8 45.9 47.7 52.3 63.7 46.2 50.9 40.3 42.4 41.8 24.4 53.4 53.6 38.4 36.6 45.6 +10.2
RoTTA [68] 51.5 50.3 51.7 60.4 58.7 52.6 54.8 47.2 43.5 42.8 25.9 49.1 48.8 46.3 39.7 48.2 +7.6
EcoTTA [51] 48.1 45.6 46.3 56.5 67.1 50.4 57.1 41.3 44.5 43.8 24.1 71.6 54.8 34.1 34.8 48.0 +7.8
ViDA [29] 47.7 42.5 42.9 52.2 56.9 45.5 48.9 38.9 42.7 40.7 24.3 52.8 49.1 33.5 32.3 43.4 +12.4
C-MAE [28] 46.3 41.9 42.5 51.4 54.9 43.3 40.7 34.2 35.8 64.3 23.4 60.3 37.5 29.2 31.4 42.5 +13.3

Ours 48.8 43.7 44.4 49.4 49.6 47.3 44.2 37.5 39.4 42.1 25.2 50.0 39.3 35.5 36.5 42.2 +13.6

Table 10: Classification error rate (%) for CIFAR100-to-CIFAR100-C, evaluated on ViT-Base with
corruption severity level 5. Bold indicates the best performance.
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Source 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 0.0
Pseudo [24] 53.8 48.9 25.4 23.0 58.7 27.3 19.6 20.6 23.4 31.3 11.8 28.4 39.6 52.3 33.9 33.2 +2.2
TENT [55] 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 25.2 39.0 47.1 33.3 32.1 +3.3
CoTTA [60] 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8 +0.6
VDP [9] 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2 32.0 +3.4
ViDA [29] 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +8.1
C-MAE [28] 48.6 30.7 18.5 21.3 38.4 22.2 17.5 19.3 18.0 24.8 13.1 27.8 31.4 35.5 29.5 26.4 +9.0

Ours 40.7 31.9 20.4 19.8 35.9 23.0 16.3 20.5 18.2 25.3 12.6 19.8 29.4 28.2 31.3 24.9 +10.5

distributing the orthogonal correction across both attention and feed-forward paths is essential. This
suggests that corruption-induced degradation affects the model in a layer-wise and cumulative manner,
and only full-layer adaptation can effectively counteract its impact.

10-Round Classification CTTA. To further evaluate the stability and effectiveness of our method, we
conduct 10-round CTTA experiments on ImageNet-C, CIFAR100-C, and CIFAR10-C. Specifically,
we cycle through the fifteen corruption domains ten times. As shown in Tab. 8, our method remains
stable throughout and even achieves slight performance improvements as adaptation progresses. The
values reported in the "10-round" row of Tab. 8 represent the average results over the ten rounds.

C Fine-grained CTTA Performance

In this section, we extend the classification and segmentation results reported in our submission by
presenting a detailed, fine-grained performance analysis. Specifically, we evaluate classification
error rate and average mIoU score across distinct corruption types. To complement the summary
results shown in Tab. 1 to Tab. 4, we provide additional detailed results in Tab. 9 to Tab. 12. These
comprehensive evaluations demonstrate the robustness and effectiveness of our approach in various
CTTA scenarios, including ImageNet-to-ImageNet-C, CIFAR-10-to-CIFAR-10-C, CIFAR-100-to-
CIFAR-100-C, and Cityscapes-to-ACDC.

D Extension to Convolutional Backbones

Beyond Vision Transformers, the core idea behind PAID, i.e., preserving the pairwise angular
structure between weight vectors, can be naturally extended to convolutional networks, since each
convolutional layer is also a linear operator with a well-defined geometric structure.

In a standard convolutional layer, each output channel corresponds to a filter of shape (Cin, kh, kw).
We flatten this into a vector of length D = Cin ·kh ·kw, treating each filter as a vector in RD. Stacking
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Table 11: Classification error rate (%) for CIFAR10-to-CIFAR10-C, evaluated on ViT-Base with
corruption severity level 5. Bold indicates the best performance.
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Source 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.1 0.0
Pseudo [24] 59.8 52.5 37.2 19.8 35.2 21.8 17.6 11.6 12.3 20.7 5.0 41.7 21.5 25.2 22.1 26.9 +1.2
TENT [55] 57.7 56.3 29.4 16.2 35.3 16.2 12.4 11.0 11.6 14.9 4.7 22.5 15.9 29.1 19.5 23.5 +4.6
CoTTA [60] 58.7 51.3 33.0 20.1 34.8 20.0 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6 +3.5
VDP [9] 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4.0 27.5 18.4 22.5 19.9 24.1 +4.0
ViDA [29] 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +7.4
C-MAE [28] 30.6 18.9 11.5 10.4 22.5 13.9 9.8 6.6 6.5 8.8 4.0 8.5 12.7 9.2 14.4 12.6 +15.5

Ours 22.9 11.8 9.9 9.1 16.7 10.8 7.4 7.4 6.6 11.4 4.5 9.3 12.8 9.4 14.5 11.0 +17.1

Table 12: Average mIoU score (%) for Cityscapes-to-ACDC, evaluated on Segformer-B5. The same
target domains are repeated three rounds. Bold indicates the best performance.

Method
Round 1 Round 2 Round 3

Mean↑ Gain↑
Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑

Source 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 0.0
TENT [55] 69.0 40.2 60.1 57.3 56.7 68.3 39.0 60.1 56.3 55.9 67.5 37.8 59.6 55.0 55.0 55.7 -1.0
CoTTA [60] 70.9 41.2 62.4 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.0 62.7 59.7 58.6 58.6 +1.9
DePT [10] 71.0 40.8 58.2 56.8 56.5 68.2 40.0 55.4 53.7 54.3 66.4 38.0 47.3 47.2 49.7 53.4 -3.3
VDP [9] 70.5 41.1 62.1 59.5 58.3 70.4 41.1 62.2 59.4 58.2 70.4 41.0 62.2 59.4 58.2 58.2 +1.5
SAR [42] 69.0 40.2 60.1 57.3 56.7 69.0 40.3 60.0 67.8 59.3 67.5 37.8 59.6 55.0 55.0 57.0 +0.3
EcoTTA [51] 68.5 35.8 62.1 57.4 56.0 68.3 35.5 62.3 57.4 55.9 68.1 35.3 62.3 57.3 55.8 55.8 -0.9
ViDA [29] 71.6 43.2 66.0 63.4 61.1 73.2 44.5 67.0 63.9 62.2 73.2 44.6 67.2 64.2 62.3 61.9 +5.2
C-MAE [28] 71.9 44.6 67.4 63.2 61.8 71.7 44.9 66.5 63.1 61.6 72.3 45.4 67.1 63.1 62.0 61.8 +5.1

Ours 69.6 45.5 68.0 60.7 61.0 72.3 45.2 66.8 62.5 61.7 72.6 46.9 68.4 63.8 62.9 62.2 +5.5

these column-wise yields a weight matrix W ∈ RD×Cout , which we decompose as:

W = M ⊙ Ŵ ,

where Ŵ contains unit-norm columns and M ∈ R1×Cout stores the magnitudes. During adaptation,
we freeze Ŵ and update M along with a learnable orthogonal matrix O ∈ RCout×Cout , constructed via
Householder reflections. The updated weights become:

W ′ = M ⊙
(
Ŵ ·O

)
.

Here, O operates along the output channel dimension. The spatial structure within each filter remains
intact because we do not rotate across spatial positions. Notably, flattening convolution filters and
treating them as vectors is a standard practice in low-rank adaptation and model compression literature.
Reshaping back after rotation ensures that spatial locality is fully preserved during convolution.

To validate this extension, we follow standard CTTA setups used in prior works: WideResNet-28 on
CIFAR-10-C, ResNeXt-29 on CIFAR-100-C, and ResNet-50 on ImageNet-C. We select representative
and open-sourced baselines for comparison, using benchmark results that have been consistently
reported and validated across multiple CTTA studies. As shown in Tab. 13, PAID achieves consistent
performance gains across all convolutional backbones, indicating that PAID generalizes beyond ViTs
and is also applicable to CNNs.

To further explain why PAID remains valid in convolutional networks, we revisit several prior studies
on the geometric structure of convolutional filters. DCNet [33] shows that the convolution operation
can be reformulated as an inner product and decomposed into magnitude and angular: the magnitude
better models intra-class variation, while the angular captures semantic differences. SphereConv [34]
further demonstrates that learning only the angular component of convolutional filters is sufficient
for semantic classification. These findings indicate that the angular structure in CNNs also carries
domain-invariant semantics. Therefore, applying PAID’s strategy to convolutional networks is not
only formally valid, but also empirically supported by prior work.
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Table 13: Extension of PAID to convolutional backbones. Test error (%) on three CTTA benchmarks.

Dataset Model Source TENT [55] CoTTA [60] AdaCon [1] CRG [79] LAW [44] Ours
ImageNet-C ResNet-50 82.0 62.6 62.7 65.5 59.1 60.1 58.4
CIFAR100-C ResNeXt-29 46.4 60.9 32.5 33.4 29.0 30.9 28.1
CIFAR10-C WideResNet-28 43.5 20.7 16.1 18.5 15.9 15.7 15.0

E Intuition Behind the Performance Drop with Small Batch Sizes

As shown in Fig. 6 (c), most existing CTTA methods, including ours, exhibit a notable performance
drop as the batch size decreases. This behavior is not specific to our approach, similar trends have
been reported in prior works such as [68] (Fig. 4(d)) and [51] (Tab. 5), where small-batch scenarios
consistently lead to degraded adaptation performance.

For our method in particular, the primary factor is the reliability of target feature statistics. In Eq. 9,
we perform alignment between source and target distributions using the mean and standard deviation
computed from the current test batch. When the batch size is small, these estimates become highly
variable and noisy, which results in unstable gradients and impairs the optimization process. This
instability ultimately hinders adaptation effectiveness.

In contrast, larger batch sizes produce more reliable and smoother estimates of distributional statistics,
effectively reducing variance in the adaptation signal. This leads to more stable parameter updates
and improved learning dynamics. Empirically, we observe that performance becomes acceptable
when the batch size exceeds 4, and saturates when the batch size is greater than 32.

F Limitations

While PAID shows consistent gains under diverse corruptions, it is built upon a central hypothesis:
the angular structure learned by source pre-trained models is potentially generalizable across diverse
target domains. This assumption has been preliminarily validated through experiments, yet its
applicability boundaries remain unclear, particularly under extreme conditions. Moreover, hyper-
parameter tuning remains a common challenge in the CTTA community, underscoring the need for
automated tuning strategies to enhance practical usability. Finally, extending the idea of angular
structure preservation to tasks such as few-shot learning, and continual learning presents a promising
direction, where maintaining the geometric stability of weights may likewise prove essential.
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paper’s contributions and scope?

Answer: [Yes]

Justification: Please see Introduction 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Conclusion and Limitations F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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will be specifically instructed to not penalize honesty concerning limitations.
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Justification: For each theoretical result, we provide the full set of assumptions and a
complete and correct proof.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Implementation Details in Experiments 4.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
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to reproduce that algorithm.
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(c) If the contribution is a new model (e.g., a large language model), then there should
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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Answer: [NA]
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Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Answer: [NA]
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• The answer NA means that the paper poses no such risks.
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necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators or original owners of assets including code, data, and models
used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: Only for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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